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Figure S1. Genome editing of TBX5 in human iPSCs, and additional phenotyping of iPSC-derived
cardiomyocytes by TBX5 genotype. Related to Figure 1. (A) Diagram of the human TBX5 gene. Exons
encoding the T-box domain of TBX5 are indicated in red. sgRNA1 was used to target exon 3 of TBX5 by a
CRISPR/Cas9 nuclease. (B) Sequence of the exon 3 of TBX5 is shown, along with the sgRNA1 location. The
PAM site is boxed in blue. Loss of the Nlalll site at the PAM site was used in initial screening for mutant iPS
cell clones by PCR. The encoded wildtype protein sequence includes the start of the T-box domain. (C)
Sequence and chromatogram for the 2bp insertion of the mutant allele for TBX5™* predicts a premature
truncation, as indicated by a stop codon (white asterisk in red box) in the frame-shifted protein sequence. (D,
E) Sequence and chromatogram for the 1 bp insertion, or 8 bp deletion, respectively, of the mutant allele for
TBX5™! along with corresponding protein sequences, are shown. (F) Table shows genotypes of WTC11-
derived iPS cell lines that were targeted for TBX5 at exon 3. Predicted translation for each TBX5 genotype is
indicated. (G) Myofibrillar arrangement in cardiomyocytes was manually scored on a scale of 1-5, similar to
(Judge et al., 2017). No cells displayed a score above 4. Sample sizes were as follows (WTC11 n=97, Control
n=129, TBX5™* n=53, TBX5"*' n=69). Scale bar: 25 microns. (H) Action potentials by patch clamp of single
beating cells for each TBX5 genotype. (I) Action potential duration at 90% (APDgo) (* FDR<0.05).
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Figure S2. Diversity of iPSC-derived cell types by TBX5 genotype. Related to Figure 2. (A) Manual
assignment of iPSC-derived cell types by TBX5 genotypes at day 23. (B) Distribution of iPSC-derived
cardiomyocyte classification by TBX5 genotype at day 23. (C) A confusion matrix compares test vs. predicted
cell type labels for human fetal cardiac cells (Asp et al., 2019). (D) A confusion matrix compares cell type
assignments of iPSC-derived cells at day 23 by manual annotation and in vivo classifier prediction. Color of
each dot represents a prediction probability of the in vivo cell type classifier, while the dot size displays the
percentage of the total iPSC-derived cells at day 23. (E) Distribution for predicted cell types of >0.7 prediction
probability is shown by TBX5 genotype at day 23 in a sunburst plot. * p<0.02, **** p<0.0001 by Fisher’s exact
test. (F) UMAPs display predicted ‘mixed’ cells and estimated doublets.
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Figure S3. Pseudotime analysis of TBX5-dependent cardiomyocyte differentiation. Related to Figure 3. (A-C)
Cells from all TBX5 genotypes at day 6, 11 or 23 are shown by harvested time point on an aggregate pseudotime
dendrogram using URD trajectory inferences. (D) Heatmaps show expression for each gene that displays a positive
or negative correlation with pseudotime (|rho|=0.4 and Z-score=15 by difference in rho) in the WT path (above) and
is altered in the TBX5™ path (below). (E) Paths for WT/TBX5™*(trident) or TBX57! (fork) to cardiomyocytes were
divided into windows (1-20) along pseudotime for comparison. (F) Heatmap shows fold change for genes in a cluster

that includes NKX2-5, which was significantly different after correction (adj p<0.05 by Bonferroni-Holm test) in

windows 2 through 8 between the deduced WT/control/ TBX5™* and TBX5" paths, along with genes of a similar
pattern, including PARP1, RPL37, KIAA1462, and ATP1A1 (adj p<0.05 by Bonferroni-Holm test).
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Figure S4. TBX5 and GATA4 occupancy near human TBX5-dependent genes. Related to Figure 4. (A)
Table shows number of TBX5-dependent genes near TBX5, GATA4 or TBX5 and GATA4 occupancy (Ang et
al., 2016). (B) Heatmap displays significant correlations (FDR<0.05) of TBX5 or GATA4 occupancy near
human TBX5-dependent gene sets (Table S5). Odds ratios for co-occupancy of TBX5 and GATA4 at TBX5-
dependent genes are in Table S5. (B-E) Browser tracks of TBX5 and GATA4 occupancy from iPSC-derived
cardiomyocytes are shown for loci of TBX5-dependent genes NPPA/NPPB, HANDZ2, FHL2 and TECRL.
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Figure S5. Assessment of two genetic backgrounds for TBX5 dose-sensitive gene expression. Related
to Figure 4. (A) Diagram of the human TBX5 gene is shown, with exons in red. The guide sgRNA2 was used to
target exon 7, which encodes a portion of the T-box domain, of TBX5 in PGP1 iPS cells. (B) A table specifies
each TBX5 mutation and the predicted translation of TBX5 for PGP1-derived TBX5"" or TBX5%"%! cells. (C, D)
UMAPs of TNNT2" cells at day 23 by TBX5 genotype (C) or cluster identity (D). (E) A phylogenetic tree shows
the relatedness of the ‘average’ cell in each cluster using PC space. The percentage of cells within a cluster
from each TBX5 genotype are colored. Related clusters between different TBX5 genotypes were compared
for differential gene expression. (F, G) Dot plots show top differentially expressed genes in (F) TBX5""-or (G)
TBX5%"*l_enriched clusters. Significance was determined by Wilcoxon Rank Sum test (adj p<0.05) (Table S2).
#: Genes commonly dysregulated between two genetic backgrounds. (H-J) TNNT2" cells are displayed in a
UMAP, by genetic background (WTC11 or PGP1-derived cells) (H), by TBX5 genotype (l), or by Louvain
clustering (J). We define TBX5 Het to reflect both cell lines (TBX5™* derived from WTC11, TBX5"" derived
from PGP 1) and TBX5 Hom to reflect both cell lines (TBX5™% from WTC11, TBX5%" from PGP1). (K) A
phylogenetic tree shows the relatedness of the ‘average’ cell in each cluster using PC space. The proportion of
cells in each cluster are colored by TBX5 genotype. Related clusters between different TBX5 genotypes were
selected for differential gene tests. (L, M) Dot plots show top differentially expressed genes in (L) TBX5™"-or
(M) TBX5%"_gnriched clusters. Top five upregulated or downregulated differentially expressed genes, along
with EP and CHD genes, were common between comparisons. Significance was determined by Wilcoxon
Rank Sum test (adj p<0.05) (Table S2, S3).
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Figure S6. Analysis of TBX5 dosage-sensitive gene regulatory networks. Related to Figure 6. (A) Correlation

plot (Pearson correlations of pagerank centralities) of TNNT2* networks by TBX5 genotypes and time points are
shown. Note that networks display highest similarity (red) within a time point. An inter-stage dissimilarity (white)

grows proportionally to the time difference (i.e. day 23 is less similar to day 6 than to day 11). Therefore, compari-

sons for genotype differences were made within differentiation stages. (B) Network similarity among TBX5 geno-
types within each time point is shown (Wilcoxon Rank Sum test of pagerank centralities for nodes from selected
time point comparisons).
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